Thermal designs

In Situ Thermal Remediation Modeling: The Basis of Design

For thermal projects, it all starts with the subsurface design. A numerical water and energy balance code can provide operational parameters such as energy input and extraction rates, operations duration and estimated utility usage that serve as the foundation upon which the rest of the in situ thermal remediation (ISTR) design is built. The numerical model simulates the addition, removal and loss of energy using a multi-layered box model approach that is driven by the conceptual site model (CSM) provided by the project consultant.

Technical Specialist, Amber Bonarrigo explores how to convert a CSM to input parameters for the numerical modeling effort, the mechanics and theory behind the numerical model and the key model outputs that fuel the overall ISTR design.

Watch Webinar

Mass Removal: Why it’s Important and How to Calculate it

Mass removal is one of the major focal points for all parties involved in thermal projects, but it is often not well-defined or understood. The basis for calculating mass removal seems simple—flow x concentration—but if we take a deeper look into the methodology behind analyzing these parameters, we find it can be far more complicated than most clients and regulators are prepared for.

Project Engineer and Senior Chemist Alyson Fortune discusses how to ensure a solid understanding of the mass present in the subsurface prior to in situ thermal remediation (ISTR), walks us through an accurate mass removal calculation during operations, and cover the various field and laboratory analytical methods that are the basis of these calculations.

Watch Webinar