Complex Thermal Remediation

ISTR Challenges Part 2: Electrical Resistance Heating and Steam Enhanced Extraction

Thermal Conduction Heating (TCH), Electrical Resistance Heating (ERH) and Steam Enhanced Extraction (SEE) are widely used thermal technologies capable of effectively remediating a variety of chemicals in various varying subsurface settings, yet sometimes operations do not perform as planned.  An experienced thermal remediation contractor can help you anticipate and address site-specific challenges during full-scale thermal projects.

Presented by Vice President of Development, John LaChance and Vice President of Technology, Steffen Griepke, ISTR Challenges Part 2 covers some of the common issues that can arise at ERH and SEE sites, and discuss how they should be addressed.  You’ll hear about scenarios involving

  • significantly different soil electrical resistivities than planned
  • slower than expected heat-up
  • stray voltages and currents
  • poor steam quality
  • higher than expected mass removal rates
  • lack of hydraulic control
  • non-uniform steam delivery and heating

Join the discussion for insight to help avoid costly project delays in your next thermal project.

Watch Webinar

The Fate of PFAS During Thermal Remediation

Is it possible to remediate PFAS contaminants? Our research and experience indicate that it is indeed possible using high-temperature thermal remediation, although there are important factors to consider  to ensure complete removal and treatment of not only target PFAS but also non-target PFAS such as precursors. In this webinar, we dive into the science of using thermal remediation to treat soil contaminated with PFAS and explore the use of our proven high-temperature thermal remediation technology, where soil temperatures ranging from 350 to 500 degrees Celsius are maintained to achieve stringent cleanup levels. Through our research, which we will share during the webinar, we were able to close the fluorine mass balance and determine the fate of the PFAS compounds during thermal treatment.  This allowed us to assess the effectiveness of high-temperature thermal remediation on the removal of PFAS from soil and to design appropriate off-gas treatment systems to ensure that the potential to emit both target and non-target PFAS, including fluorinated hydrocarbons like CF4 and other significant greenhouse gasses, are appropriately managed.

Grab your popcorn and push play for one of the year’s more informative and interesting on-demand webinars!

Watch Webinar